Lesson 27. Multiple Logistic Regression - Part 1

1 The multiple logistic regression model

- Binary response variable *Y*
- Quantitative or categorical explanatory variables X_1, \ldots, X_k
- Logit form of the model:

• Drobability form of the model		

- Probability form of the model:
- The explanatory variables can include <u>transformations</u> or <u>interaction terms</u>, like we saw for multiple <u>linear</u> regression

2 Interpreting the model

- The fitted model is
- Plug values of $X_1, ..., X_k$ into the fitted model \Longrightarrow solve for odds $(\hat{\pi}) = \frac{\hat{\pi}}{1 \hat{\pi}}$ or $\hat{\pi}$
- The estimated slope $\hat{\beta}_i$ for explanatory variable X_i is
- Therefore, $e^{\hat{\beta}_i}$ is
- In other words:

3 Formal inference for multiple logistic regression

Test for single β_i	z-test (Wald test)
CI for β_i	$\hat{\beta}_i \pm z_{\alpha/2} S E_{\hat{\beta}_i}$
Test for overall model Compare nested models	LRT test Nested LRT test

3.1 z-test (Wald test) for the slope of a single predictor

- Question: after we account for the effects of all the other predictors, does the predictor of interest X_i have a significant association with Y?
- Formal steps:
 - 1. State the hypotheses:

$$H_0: \beta_i = 0$$
 versus $H_A: \beta_i \neq 0$

2. Calculate the test statistic:

$$z = \frac{\hat{\beta}_i}{SE_{\hat{\beta}_i}}$$

- 3. Calculate the *p*-value:
 - \circ If the conditions for logistic regression hold, then test statistic follows N(0,1)

$$p$$
-value = $2(1 - P(N(0,1) < |z|))$

4. State your conclusion, based on the given significance level α

If we reject H_0 (p-value $\leq \alpha$):

We reject H_0 because the p-value is less than the significance level α . We see evidence that, after accounting for the other explanatory variables, X_i is significantly associated with Y.

If we fail to reject H_0 (p-value > α):

We fail to reject H_0 because the p-value is greater than the significance level α . We do not see evidence that $\underline{X_i}$ is significantly associated with \underline{Y} after accounting for the other explanatory variables.

3.2 Confidence intervals for the slope of a single predictor

• The $100(1-\alpha)\%$ confidence interval for the slope β_i is

$$(\hat{\beta}_i - z_{\alpha/2} SE_{\hat{\beta}_i}, \hat{\beta}_i + z_{\alpha/2} SE_{\hat{\beta}_i})$$

• The $100(1-\alpha)$ % confidence interval for the odds ratio e^{β_i} is

$$(e^{\hat{eta}_i-z_{lpha/2}SE_{\hat{eta}_i}},e^{\hat{eta}_i+z_{lpha/2}SE_{\hat{eta}_i}})$$

2

3.3 Likelihood ratio test (LRT) for model utility

- Question: Is the overall model effective?
- Formal steps:
 - 1. State the hypotheses:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$
 versus $H_A:$ at least one $\beta_i \neq 0$

2. Calculate the test statistic:

$$G = \underbrace{-2\log(L_0)}_{\text{null deviance}} - \underbrace{\left(-2\log(L)\right)}_{\text{residual deviance}}$$

- 3. Calculate the *p*-value:
 - If the conditions for logistic regression hold, then test statistic follows $\chi^2(k)$

$$p$$
-value = $1 - P(\chi^2(k) < G)$

4. State your conclusion, based on the given significance level α

If we reject H_0 (p-value $\leq \alpha$):

We see significant evidence that the model is effective.

If we fail to reject H_0 (p-value $> \alpha$):

We do not see significant evidence that the model is effective.

3.4 Nested likelihood ratio test (LRT) to compare models

• Question: is the full or reduced model better?

Full model:
$$logit(\pi) = \beta_0 + \beta_1 X_1 + \dots + \beta_{k_1} X_{k_1} + \beta_{k_1 + 1} X_{k_1 + 1} + \dots + \beta_{k_1 + k_2} X_{k_1 + k_2}$$

Reduced model: $logit(\pi) = \beta_0 + \beta_1 X_1 + \dots + \beta_{k_1} X_{k_1}$

- Formal steps:
 - 1. State the hypotheses:

$$H_0: \beta_{k_1+1} = \beta_{k_1+2} = \dots = \beta_{k_1+k_2} = 0$$
 (reduced model is more effective)
 $H_A:$ at least one $\beta_i \neq 0$ ($i \in \{k_1 + 1, \dots, k_1 + k_2\}$) (full model is more effective)

2. Calculate the test statistic:

$$G = (residual deviance for reduced model) - (residual deviance for full model)$$

- 3. Calculate the *p*-value:
 - $\circ~$ If the conditions for logistic regression hold, then the test statistic follows $\chi^2(k_2)$

3

$$p$$
-value = $1 - P(\chi^2(k_2) < G)$

4. State your conclusion, based on the given significance level α

If we reject H_0 (*p*-value $\leq \alpha$):

We see significant evidence that the full model is more effective.

If we fail to reject H_0 (p-value > α):

We do not see significant evidence that the full model is more effective.